Lyndon arrays and Lyndon trees

Thierry Lecroq

§ PUNIVERSITE | Jitis P

uuuuuuuuu

ormaslic

1st Lyndex meeting 2023, Rouen, France, December 14th, 2023

TL Lyndon arrays and Lyndon trees 1/35

Outline

© Lyndon Arrays

© Runs

© Lyndon Trees

@ Cartesian Trees

TL Lyndon arrays and Lyndon trees 2/35

Lyndon Arrays

Outline

@ Lyndon Arrays

TL Lyndon arrays and Lyndon trees 3/35

Lyndon Arrays

Lyndon words

A non-empty word z is a Lyndon word if

x is smaller than all its proper non-empty suffixes

TL Lyndon arrays and Lyndon trees 4/35

Lyndon Arrays

Lyndon arrays (1)

of a (non-empty) word x

For a position i on z, i =0,..., |z| — 1,
Lynli] is the length of the longest Lyndon factor of z starting at i:

Lyn[i] = max{¢ | x[i..i + ¢ — 1] is a Lyndon word}

TL Lyndon arrays and Lyndon trees 5/35

Lyndon Arrays

Lyndon arrays (2)

TL Lyndon arrays and Lyndon trees 6/35

Lyndon Arrays

Lyndon arrays (3)

LONGESTLYNDON(z non-empty word of length n)

1 for i < n — 1 downto 0 do

2 (Lyn[i,j) + (1,i +1)

3 whilej<nandzfi..j—1] <z[j..j+ Lyn[j] — 1] do
4 (Lyn[i], j) < (Lynli] + Lyn[j], 5 + Lyn[j])

5 return Lyn

TL Lyndon arrays and Lyndon trees 7/35

Lyndon Arrays

Lyndon arrays (4)

Well known properties

Q If w and v are Lyndon words and u < v then
e uv is also a Lyndon word
o u<uv <.
@ Each non-empty word x factorises uniquely as ugujus - - -,
where
e each u; is a Lyndon word
@ Uy > U > Uy >
o wug is the longest Lyndon prefix of x.

TL Lyndon arrays and Lyndon trees 8/35

Lyndon Arrays

Lyndon arrays (5)

Invariant

When computing Lyn/[i]:
o Lyn[k] has already been computed for i < k < n
o ufi+1..5—1]-ul[j..j+ Lyn[j] —1]--- is the Lyndon
factorisation of z[i +1..n — 1] where j =i+ 1+ Lynl[i + 1],

i J J + Lynlj]
I \ u [v \ |
Lyn|i] Lyn|[j] |
If w < v then u < wv and v < successor of v)

TL Lyndon arrays and Lyndon trees 9/35

Runs

Outline

© Runs

TL don arrays and Lyndon trees 10/35

Runs

A run is a maximal periodicity occurring in a word x:
interval [z..j] such that
e z[i..j] is periodic (i.e., its smallest period p satisfies
2p <|zfi.. gl = (G —i+1))
@ the periodicity does not extend to the right nor to the left
(i.e., z[i —1..4] and z[i..j + 1] have larger periods when
defined).

TL Lyndon arrays and Lyndon trees 11/35

Runs

0 1 2 3 4 5 6 7 8 9 10 11 12
a b aababbababb

TL Lyndon arrays and Lyndon trees 12/35

Runs

Maximal number

@ O(n) Kolpakov and Kucherov, 1999

@ 5n Rytter, 2006

@ 3.48n Puglisi, Simpson and Smyth, 2008

@ 1.6n Crochemore and llie, 2008

@ 1.49n Giraud, 2008

o 1.029n Crochemore, llie and Tinta, 2008

o n — 3 Bannai, |, Inenaga, Nakashima, Takeda, and Tsuruta,
2014

@ 0.957n Fischer, Holub, | and Lewenstein, 2015

TL Lyndon arrays and Lyndon trees 13/35

Runs

Special position

Let us consider the orderings < and its reverse <!

Each run [i.. j] is associated with its greatest suffix according to
one of the 2 orderings as follows:

Let p = per(zi.. j]).

If j+1<mnandz[j+1] > x[j —p+ 1] we assign to the run the
position k for which z[k .. j] is the greatest proper suffix of z[i .. j]
according to <.

Otherwise, k is the starting position of the greatest proper suffix of
x[i..j] according to <~ 1.

The position k assigned this way to a run is called its special
position.

TL Lyndon arrays and Lyndon trees 14 /35

Runs

0 1 2 3 4 5 6 7 8 9 10 11 12
a b aababbababob

TL Lyndon arrays and Lyndon trees 15/35

Runs

If the special position k& of a run of period p is defined according to
<1 (resp. <) then

z[k ..k + p— 1] is the longest Lyndon factor of x starting at
position k according to < (resp. < 1).

TL Lyndon arrays and Lyndon trees 16 /35

Runs

Proof

Let [z..J] be a run of period p with special position k.

z[k ..k +p—1] is a Lyndon word because it is smaller than all its
proper suffixes according to <.

Consider a longer factor z[k..j'] for k +p < j' < 5.

It has period p which is smaller than its length; equivalently it is
not border free, which shows it is not a Lyndon word for any of the
2 orderings.

v

TL Lyndon arrays and Lyndon trees 17/35

Runs

Proof

There is nothing else to prove if j +1 = |z|.
Assume then that j' > j and a = z[j + 1].

i k kE+p Jj+1 7’
l ro | ori 1 r s g l

U U [v

z[k .. j] = u®v of period |u@(v is a proper prefix of u): greatest
suffix of z[i .. j] according to <!

Sincea=z[j+1] <z[j —p+1] =, we get

zlk+p..j+1] <z[k..j—p+ 1], which leads to

xzlk+p..j'] <zlk..j'] and shows that z[k..j’] is not a Lyndon
word according to <.

TL Lyndon arrays and Lyndon trees 18/35

Runs

RUNS(z non-empty word of length n)

1 for i < n — 1 downto 0 do

2 (Iynlil,g) & (Li+1)

while j <nand z[i..j — 1] < z[j..j + Lyn[j] — 1] do
(Lynld], j) < (Lynli] + Lyn[j], j + Lyn[j])

£« |les(z[0..i —1],2[0..7+ Lyn[i] — 1])|

r < |lep(xfi..|x| — 1], z[i + Lynl[i] .. |z| — 1])|

if {+1r > Lyn[i] then
output run [i — £..7+ Lyn[i] +r — 1]

O NS G0N W

TL Lyndon arrays and Lyndon trees 19/35

Runs

Runs (10)

@ lcs: longest common suffix
@ lcp: longest common prefix

o LCE: longest common extensions, can be computed in
constant time after linear preprocessing

TL Lyndon arrays and Lyndon trees 20/35

Lyndon Trees

Outline

© Lyndon Trees

TL Lyndon arrays and Lyndon trees 21/35

Lyndon Trees

Lyndon trees (1)

Definition

Let w be a Lyndon word s.t. |w| > 1, and let w = uw such that v
is the smallest proper non-empty suffix of w (standard
factorisation) then w is also a Lyndon word.

Then the Lyndon tree T'(w) of w is recursively defined as follows:

@ the root is w
o the left subtree of the root is T'(u)
@ the right subtree of the root is T'(v)

TL Lyndon arrays and Lyndon trees 22/35

Lyndon Trees

Lyndon trees (2)

TL Lyndon arrays and Lyndon trees 23/35

Lyndon Trees

Lyndon trees (3)

LYNDONTREE(z non-empty word of length n)

I (UvT(U)) — (m[n - 1]7 ('r[n - 1]7 ()7 ()))
2 for i < n — 2 downto 0 do
(u, T(w)) = (21}, (=[i], (), ()))
while v < v do
T(w) « (w, T(u),T(v))
U < uv
v <— next phrase or €
8 return T'(x)

NS N Q

TL Lyndon arrays and Lyndon trees 24 /35

Cartesian Trees

Outline

@ Cartesian Trees

TL Lyndon arrays and Lyndon trees 25/35

Cartesian Trees

Cartesian Trees (1)

Definition
Let x be a string of numbers of length m.
The Cartesian Tree C'T'(z) [Vuillemin 1980] of z is the binary tree
where:
@ the root corresponds to the index i of the minimal element of
x (if there are several occurrences of the minimal element, the
leftmost one is chosen)
o the left subtree is CT(z[1..7 —1])

o the right subtree is CT(xz[i + 1..m])

TL Lyndon arrays and Lyndon trees 26 /35

Cartesian Trees

Cartesian Trees (2)

TL Lyndon arrays and Lyndon trees 27/35

Cartesian Trees

Cartesian Trees: Incremental Construction From Right To
Left, Bottom-Up Scan of the Left Path

TL Lyndon arrays and Lyndon trees 28 /35

Cartesian Trees

Cartesian Trees: Incremental Construction From Right To
Left, Bottom-Up Scan of the Left Path

TL Lyndon arrays and Lyndon trees 28 /35

Cartesian Trees

Cartesian Trees: Incremental Construction From Right To
Left, Bottom-Up Scan of the Left Path

TL Lyndon arrays and Lyndon trees 28 /35

Cartesian Trees

Cartesian Trees: Incremental Construction From Right To
Left, Bottom-Up Scan of the Left Path

TL Lyndon arrays and Lyndon trees 28 /35

Cartesian Trees

Cartesian Trees: Incremental Construction From Right To
Left, Bottom-Up Scan of the Left Path

TL Lyndon arrays and Lyndon trees 28 /35

Cartesian Trees

Cartesian Trees: Incremental Construction From Right To
Left, Bottom-Up Scan of the Left Path

TL Lyndon arrays and Lyndon trees 28 /35

Cartesian Trees

Cartesian Trees: Incremental Construction From Right To
Left, Bottom-Up Scan of the Left Path

TL Lyndon arrays and Lyndon trees 28 /35

Cartesian Trees
Cartesian Trees: Incremental Construction From Right To
Left, Bottom-Up Scan of the Left Path

TL Lyndon arrays and Lyndon trees 28 /35

Cartesian Trees
Cartesian Trees: Incremental Construction From Right To
Left, Bottom-Up Scan of the Left Path

TL Lyndon arrays and Lyndon trees 28 /35

Cartesian Trees

Cartesian Trees (4)

CARTESIANTREE(z non-empty word of length n)

1 Root(T) «+n—1
2 S+ (n—-1)
3 for i <~ n — 2 downto 0 do
4 r+ Ni
5 while S # () and z[i] < z[Top(S)] do
6 r < Pop(S)
7 Right(i) < r
8 if S # 0 then
9 Left(Top(S)) <t
10 else Root(T) <1
11 return T

TL Lyndon arrays and Lyndon trees 29 /35

Cartesian Trees

Cartesian Trees (5)

0/1(2|3|4(5|6(7|8|9|10({11{12|13|14|15|16
x |fla|b|lbla|blajajbla|b|b|a|b|alal|b
SA |0|14| 6 |15|12| 4 |7(9| 1 |16/13|5 (11| 3|8 |10| 2
ISA|0| 8 |16|13| 5 |11{2|6(14| 7 |15(12| 4 (10/1|3 |9

TL Lyndon arrays and Lyndon trees 30/35

Cartesian Trees

Cartesian Trees (6)

0(1|2(3|4|5(6|7|8]9|10(11{12|13|14|15|16
x|flalb|blalblalajbla|b|b|a|b|lala|b

<__Habbabaababbab aab)

TL Lyndon arrays and Lyndon trees 31/35

Cartesian Trees

Cartesian Trees (6)

(fabbab> aababbab>

TL Lyndon arrays and Lyndon trees 31/35

Cartesian Trees

Cartesian Trees (6)

TL Lyndon arrays and Lyndon trees 31/35

Cartesian Trees

Cartesian Trees (6)

@& &

TL Lyndon arrays and Lyndon trees 31/35

Cartesian Trees

Cartesian Trees (6)

TL Lyndon arrays and Lyndon trees 31/35

Cartesian Trees

Cartesian Trees (6)

TL Lyndon arrays and Lyndon trees 31/35

Cartesian Trees

Cartesian Trees (6)

TL Lyndon arrays and Lyndon trees 31/35

Cartesian Trees

Cartesian Trees (6)

TL Lyndon arrays and Lyndon trees 31/35

Cartesian Trees

Cartesian Trees (6)

TL Lyndon arrays and Lyndon trees 31/35

Cartesian Trees

Cartesian Trees (6)

TL Lyndon arrays and Lyndon trees 31/35

Cartesian Trees

Cartesian Trees (6)

TL Lyndon arrays and Lyndon trees 31/35

Cartesian Trees

Cartesian Trees (6)

TL Lyndon arrays and Lyndon trees 31/35

Cartesian Trees

Cartesian Trees (6)

TL Lyndon arrays and Lyndon trees 31/35

Cartesian Trees

Cartesian Trees (6)

TL Lyndon arrays and Lyndon trees 31/35

Cartesian Trees

Cartesian Trees (6)

TL Lyndon arrays and Lyndon trees 31/35

Cartesian Trees

Cartesian Trees (6)

TL Lyndon arrays and Lyndon trees 31/35

Cartesian Trees

Cartesian Trees (6)

TL Lyndon arrays and Lyndon trees 31/35

Cartesian Trees

LONGESTLYNDON(z, n)

1 for i <~ n — 1 downto 0 do

(Lynli),) = (Li+1)

3 whilej<nandzfi..j—1] <z[j..j+ Lyn[j] — 1] do
4 (Lyn[i], §) < (Lynli] + Lyn[j], j + Lyn(j])

5 return Lyn

N

LONGESTLYNDON(x, n)

1 for i < n — 1 downto 0 do

(Lynli], j) < (1,i+1)

3 while j < n and ISA[i] < ISA[j] do

4 (Lyn[i], j) < (Lyn[i] + Lyn[j],j + Lyn[j])
5 return Lyn

N

TL Lyndon arrays and Lyndon trees 32/35

Main Reference

125 Problems in
Text Algorithms

Maxime Crochemore
Thierry Lecroq
Wojciech Rytter

TL Lyndon arrays and Lyndon trees 33/35

Cartesian Trees

Other References

@ M. Crochemore, L.M.S. Russo
Cartesian and Lyndon trees
Theoretical Computer Science 806 (2020) 1-9

@ C. Hohlweg, C. Reutenauer
Lyndon words, permutations and trees
Theoretical Computer Science 307(1) (2003) 173-178

TL Lyndon arrays and Lyndon trees 34/35

Cartesian Trees

Thank you for your attention!

TL Lyndon arrays and Lyndon trees 35/35

	Lyndon Arrays
	Runs
	Lyndon Trees
	Cartesian Trees

