USING NECKLACES TO BUILD A LOCALITY-PRESERVING AND DYNAMIC
INDEX FOR K-MERS

lgor MARTAYAN, Bastien CAzAUX, Camille MARCHET, Antoine LIMASSET
December 14, 2023

Seminar on Lyndon words — Rouen

v
L @ Tuc

https://igor.martayan.org/

DNA SEQUENCING & TOKENIZATION WITH K-MERS

£
DNA samples ° —» — CTGAAATG..

We typically index the words of size k (k-mers)

instead of the sequence itself. CTGAA
TGAAA
In practice, we usually consider k < 63 so that GAAAT

each k-mer fits inside a machine word. AAATG

1/12

MOTIVATION OF THIS WORK

Plenty of compact data structures for storing k-mers ...but most of them are static

Time (ps/query)

- Nav. lower bound v Plain-split + EF-concat e Sshash
Plain-matrix <« RRR-split ¢ Plain-subsetwt e Bifrost
RRR-matrix Ao EF-split ¢ RRR-subsetwt e VARI
EF-matrix + Plain-concat
Single positive Single negative Streaming positive
. . e
i 102 4
i 10%
107 4o
£ %
i 1014 4 s
RS 1® i
4 Ay v .t
® 10° 4 i g
® ay® 3 7
10°4
100 : . 2l T
10! 10! 10!

Memory (bits/kmer)

Memory (bits/kmer)

Memory (bits/kmer)
2/12

Query time and memory usage of some efficient data structures, taken from [Alanko et al. 22]

REVISITING A SIMPLE IDEA: K-MERS AS A SPARSE SET OF INTEGERS

[Conway & Bromage 11]

- we can see k-mers as integers in [4]
A—-00 C—01 G—10 T—11

- since they're usually very sparse, we can
use a sparse bitvector to store them

Limitations

- it's not really dynamic
- it's not cache-efficient

- index(ATAACGCCA) = 49,556
- index(TAACGCCAT) = 198,227

— average distance of 4%/2

3/12

REVISITING A SIMPLE IDEA: K-MERS AS A SPARSE SET OF INTEGERS

[Conway & Bromage 11] Limitations
- we can see kR-mers as integers in [[4’“]] - it's not really dynamic
A—-00 C—01 G—-10 T—11 - it's not cache-efficient
- since they're usually very sparse, we can - index(ATAACGCCA) = 49,556
use a sparse bitvector to store them + index(' TAACGCCAT) = 198,227

— average distance of 4%/2
How can we improve this approach?

3/12

WISH LIST FOR AN IDEAL DATA STRUCTURE

- space-efficient: few bits / k-mer

- dynamic: support insertion and deletion after construction

- efficient queries:

CTGAAATG..
- membership CTGAA
- enumeration TGAAA
- insertion GAAAT
- deletion AAATG
- locality-preserving: reduce cache misses _
when querying consecutive k-mers batch queries

4/12

PRESERVING LOCALITY WITH NECKLACES

A LOCALITY-PRESERVING ENCODING OF K-MERS

CTAAC
TAACG

5/12

A LOCALITY-PRESERVING ENCODING OF K-MERS

CTAAC
TAACG

Alternative encoding based on necklaces

The necklace of zis its smallest cyclic rotation (z) = Ominkx(i)
<i<

5/12

A LOCALITY-PRESERVING ENCODING OF K-MERS

Alternative encoding based on necklaces

The necklace of zis its smallest cyclic rotation (z) = Ominkx(i)
<i<

- z— ({x), rotation index) is a reversible transformation

- necklaces of consecutive k-mers share long prefixes

5/12

A CLOSER LOOK AT THE LOCALITY OF NECKLACES

AACGTCATCTCTCATTCTGGTCGTTCTTCCT
AACGTCATCTCTCATTCTGTTCGTTCTTCCT
AACGTCATCTCTCATTCTGTGCGTTCTTCCT .)

Size of common prefix
AACGTCATCTCTCATTCTGTGAGTTCTTCCT between necklaces of successive k-mers (k= 31)
AACGTCATCTCTCATTCTGTGACTTCTTCCT 30 A “’.s [4 " ’"/ ,’ 9 (2.4 g [4
AACGTCATCTCTCATTCTGTGACATCTTCCT D : : E‘é 2
AACGTCATCTCTCATTCTGTGACACCTTCCT
AACGTCATCTCTCATTCTGTGACACGTTCCT 10 -
AACGTCATCTCTCATTCTGTGACACGCTCCT
AACGTCATCTCTCATTCTGTGACACGCACCT 0 T
AACGTCATCTCTCATTCTGTGACACGCAGCT
AACGTCATCTCTCATTCTGTGACACGCAGGT
AACGTCATCTCTCATTCTGTGACACGCAGGG
ACACGCAGGGTACGTCATCTCTCATTCTGTG

20 1

6/12

PRACTICAL USE OF NECKLACES

OVERVIEW OF OUR DATA STRUCTURE (CBL)

Quotiented
data structure

Query z:
1. compute (z)
2. split(z) as q|| r
3. look for (g, r)

sparse bitvector
for prefixes

pointers to
containers

packed vectors
for suffixes

7/12

ACCELERATING THE COMPUTATION OF CONSECUTIVE NECKLACES

Basic approach: compute every cyclic rotation and select the smallest in O(k).
— O(nk) for n queries

Better approach: amortize the computation cost for consecutive queries.

Key observation
Given a fixed m, if (z) does not start at one of the m — 1 last positions of z,
its prefix of size m is the smallest factor of size m in z.

Good news: we can keep track of the smallest factors of size min O(1)
amortized time using a monotone queue.

8/12

ACCELERATING THE COMPUTATION OF CONSECUTIVE NECKLACES

Faster necklace computation
Only consider the cyclic rotations that start:

- at one of the smallest factors of size m
- at one of the m — 1 last positions

80

Useful property [Zheng et al. 20]
Assuming m = Q(log k), the probability that a 20
k-mer contains duplicate m-mers is o(1/k).

Computation time (ns/kmer)

20 30 40 50 60

By choosing m = ©(log k),
the smallest factor of size m is unique w.h.p.
— O(nm) = O(nlog k) for n queries (on average)

9/12

DENSIFIYING THE SPACE OF NECKLACES

DENSIFIYING THE SPACE OF NECKLACES BY RANKING

The number of necklaces of size kon an alphabet with o letters is

=5 32 (5)o*~

dlk
so only a fraction i of the universe is actually used

AAAA Cccc GGGG TTTT

10/12

DENSIFIYING THE SPACE OF NECKLACES BY RANKING

The number of necklaces of size kon an alphabet with o letters is

1 K\ 4 oF
N(R) = kZSD(d)" ~ %
d|k
so only a fraction i of the universe is actually used

AAAA Cccc GGGG TTTT

R —

Ranking: given a necklace (z), find i s.t. (x) is the i-th smallest necklace of size k
We can compute the rank in O(4?) time [Sawada & Williams 17]

Tradeoff: better locality + compression vs O(k*) queries

10/12

CAN WE DO BETTER FOR CONSECUTIVE NECKLACES? (| DON'T KNOW YET)

Ranking in O(k?) is generally too expensive for our use case,
but it might be faster to rank necklaces of consecutive k-mers.

Since most necklaces of consecutive words share the same
starting position, they only differ by a single letter.

AACGTCATCTCTCATTCTGGTCGTTCTTCCT
AACGTCATCTCTCATTCTGTTCGTTCTTCCT

Formulation in the binary case (o = 2)
How does the rank of (x) change if we flip its i-th bit?

1/12

CONCLUSION

TAKE-HOME MESSAGES & OPEN QUESTIONS

Indexing k-mers with their necklaces:
- preserves locality
- Improves compression
- fits in well with a quotiented data structure
- combines easily with dynamic operations

Future questions:
- What is the average distance between necklaces of consecutive k-mers?

- Can we rank necklaces in subquadratic time?
- Can we accelerate ranking for necklaces of consecutive k-mers?

12/12

TAKE-HOME MESSAGES & OPEN QUESTIONS

Indexing k-mers with their necklaces:
- preserves locality
- Improves compression
- fits in well with a quotiented data structure
- combines easily with dynamic operations

Future questions:
- What is the average distance between necklaces of consecutive k-mers?

- Can we rank necklaces in subquadratic time?
- Can we accelerate ranking for necklaces of consecutive k-mers?

Thank you!

12/12

REFERENCES |

) & &

Alanko, Jarno N, Simon J Puglisi & Jaakko Vuohtoniemi (2022). “Succinct k-mer sets using
subset rank queries on the spectral burrows-wheeler transform”. In: bioRxiv, pp. 2022-05.
Conway, Thomas C & Andrew J Bromage (2011). “Succinct data structures for assembling large
genomes”. In: Bioinformatics 27.4, pp. 479-486.

Sawada, Joe & Aaron Williams (2017). “Practical algorithms to rank necklaces, Lyndon words,
and de Bruijn sequences”. In: Journal of Discrete Algorithms 43, pp. 95-110.

Zheng, Hongyu, Carl Kingsford & Guillaume Marcais (2020). “Improved design and analysis of

practical minimizers”. In: Bioinformatics 36.Supplement_1, pp. i119-i127.

	Preserving locality with necklaces
	Practical use of necklaces
	Densifiying the space of necklaces
	Conclusion
	Appendix

